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A nonlinear model is studied which describes the evolution of a landscape under
the effects of erosion and regeneration by geologic uplift by mean of a simple
differential equation. The equation, already in wide use among geomorpholo-
gists and in that context obtained phenomenologically, is here derived by
reparametrization invariance arguments and exactly solved in dimension d=1.
Results of numerical simulations in d=2 show that the model is able to repro-
duce the critical scaling characterizing landscapes associated with natural river
basins. We show that configurations minimizing the rate of energy dissipation
(optimal channel networks) are stationary solutions of the equation describing
the landscape evolution. Numerical simulations show that a careful annealing of
the equation in the presence of additive noise leads to configurations very close
to the global minimum of the dissipated energy, characterized by mean field
exponents. We further show that if one considers generalized river network
configurations in which splitting of the flow (i.e., braiding) and loops are
allowed, the minimization of the dissipated energy results in spanning loopless
configurations, under the constraints imposed by the continuity equations. This
is stated in the form of a general theorem applicable to generic networks,
suggesting that other branching structures occurring in nature may possibly
arise as optimal structures minimizing a cost function.

KEY WORDS: Rivers; scaling; landscape evolution; optimal transportation
networks.



1. INTRODUCTION

Branching river networks are one of the most common examples of fractal
patterns spontaneously produced in nature. The drainage network in a
river basin has a tree-like structure which provides an efficient means of
transportation and shows clear evidence of fractal behavior, characterized
by the absence of a well defined length scale. An account of previous
research with an extensive list of references can be found in ref. 1.

Numerous efforts to model the production zone of a river (where the
water is collected from relatively uniform spatial patterns of rainfall injec-
tion during landscape-forming events. Thus leading flow rates (fluxes) may
be assumed as proportional to total contributing areas (1)) have primarily
focused on reproducing the statistical characteristics of the drainage
network. Less attention has been paid to the temporal behavior and to the
evolution of the soil height profile. Recently, this issue has been addressed
by many authors. (2–6) Here we discuss a nonlinear model which describes
the evolution of a landscape under the effects of erosion by means of a simple
differential equation. A brief summary of some of the results of this
paper has appeared in ref. 6. This model simulates the evolution of a
featureless surface to a morphologically realistic landscape, due to effects of
erosion.

Data on the landscape of a basin are obtained in the form of Digital
Elevation Maps (DEM) (7–9) consisting of discretized elevation fields remo-
tely acquired and objectively manipulated. The discretization units are
called pixels and are boxes of about 10×10 m2 in a square grid. The drain-
age network is determined from a DEM assigning to each pixel a drainage
direction. Assuming that water flows downhill through steepest descent, an
assumption deemed reasonable at the scales of interest, drainage directions
go from each pixel to the nearest neighbor with the lowest height. Multiple
flow directions occur in topographically convex sites, (10) or in braided pat-
terns. (1) The former arise where hillslope processes dominate whereas here
we address scales where fluvial erosion processes are the chief landforming
processes, and the latter are excluded because they seldom occur in the
production zone. This occurrence of looping structures and multiple flow
directions will, however, be further addressed in the last part of this paper.

To each pixel i one can associate a variable that gives the number of
pixels draining through i. This quantity represents the total drainage area
(total contributing, or accumulated area) ai at the point i, expressed in pixel
units, and, in the case of uniform rainfall, provides a measure of the flow at
that point. The upstream length li at the point i is defined as the distance
from the farthest source draining into i, measured along the stream (see
Fig. 1).
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In a first approximation, channels may be defined as being made of
those pixels with total drainage area greater than a support area threshold,
even though it has been argued (10) that the support area alone may not be
sufficient to determine channel initiation.

Observations have lead to a lot of empirical relations between quanti-
ties characterizing rivers morphology. Hack’s law (1957), (11, 12) relates the
upstream length at a given position to the accumulated area a at that posi-
tion: l=kah with k 4 1.4 and h 4 0.6 (see below for a precise formulation
of this scaling law).

This relation is true both for sub-basins of the same basin and for the
whole basin of different rivers with approximately the same values for k
and h. The departure of the observed value of h from the naive value 1

2 lead
to the first conjectures about the fractality of rivers. (13) Another empirical
relation (slope-discharge) is between the accumulated area, a, in a point and
the gradient of the height of the landscape at that point: |NFz| 3 ac−1 with a
numerical value of c around 0.5. The distributions of accumulated areas ai
and upstream lengths li are characterized by power law distributions (with
the expected finite size corrections) with exponents y and k respectively, in
the ranges 1.40−1.46 and 1.67−1.85. (12)

Recently, a lot of effort has been expended in order to define static
models able to reproduce these statistical characteristics of real rivers (for a
review see ref. 1).

Real drainage basins are not static but usually evolve on extremely
long time scales. Nevertheless, some statistical properties seem to be pre-
served during the evolution. This follows from the fact that some quantities
characterizing river basin morphology are almost the same for all rivers,
irrespective of their ‘‘age.’’

Our aim is to find the simplest model that simulates the dynamical
evolution of morphologically realistic landscapes and that preserves certain
features during evolution. The equation we propose to describe the evolu-
tion of the landscape is

Ż(t, x)=−aJ(t, x) |NFZ(t, x) |2+DN2Z(t, x)+c, (1)

where Z denotes the elevation at the point x=(x, y) of the substrate plane
and J is the modulus of the water flux at that point at time t. The first term
is an erosional term proportional to the flux, the second is a diffusive term,
and the third is a constant term modeling what geomorphologists call the
uplift. The existence of an uplift originating in tectonic forces is a well
known fact in geomorphology: (10, 14) a landscape represents the instanta-
neous equilibrium of two concurrently active processes, uplift (endogenic)
and degradation (exogenic). A stationary state results from the exact
balance of these two agents.
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A simple argument leading to an equation of the form (1) is the
following: the evolution of a landscape has to be of the form Ż=
F(NFZ, N2Z,..., J), where an explicit dependence on Z is excluded because
that would break translational invariance, and the dependence on JF (a two
dimensional vector) is simply through J=|JF| because JF is parallel to NFZ.
In the small gradient expansion

Ż=A+BF ·NFZ+C(NFZ)2+· · · . (2)

On observing that, in order to ensure rotational invariance, BF — 0, one
recovers an equation of the form (1). In the next section Eq. (1) will be
derived by reparametrization invariance. (6, 15, 16)

The constant term in Eq. (1) can be eliminated by simply replacing
Z(t, x) with z(t, x)=Z(t, x)−ct in Eq. (1), which is equivalent to a frame
of reference in which the system drifts with velocity c. In the new coordi-
nates, Eq. (1) can be rewritten as

ż(t, x)=−aJ(t, x) |NFz(t, x)|2+DN2z(t, x). (3)

Recently this equation has been derived with a similar argument by Somfai
and Sander. (18) The diffusive term acts on the surface even at points with
zero contributing areas unlike the first term which vanishes when the flux
becomes zero. In absence of the diffusive term the presence of maxima on
the surface will cause the formation of singularities during the evolution,
because points at the top of a hill will never be eroded by the first term
(both J and NFz vanish). The presence of at least an infinitesimal diffusive
term is then essential in eliminating these singularities. Equation of type (3)
for the study of river networks have been also studied using dynamical
renormalization group in ref. 19.

In the discretized version of the model each site (pixel) collects at least
an unit area and thus no singularities due to a vanishing contributing area
appear even in the absence of the diffusive term. Moreover, the discretiza-
tion implicitly introduces a diffusive effect because it smoothes z on dis-
tances of the order of the lattice length and also prevents the occurence of
singularities due to a vanishing NFz when D=0.

Versions of Eq. (3) and of the more general Eq. (2) in which the pre-
sence or the value of the coefficients of different terms are subordinated to
the modulus of the slope exceeding a given threshold have also been
studied. (20) In this paper, we will focus on the simplified version of Eq. (3)
in the discretized lattice form obtained by putting D=0.

In fact, due to the coarse grained scale of the elevation field, the effect
of the diffusive term would be negligible because it is not relevant to the
large size behavior. Thus, from now on, we will consider the equation

ż(t, x)=−aJ(t, x) |NFz(t, x)|2. (4)
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When it is not explicitly stated otherwise, the flux will be taken to be pro-
portional to the drained area and the terminology fluxes and drained areas
will be used interchangeably. This corresponds to the assumption of an
uniform rainfall acting on the surface.

It should be noted that geomorphologists employ a different version of
Eq. (4) (see ref. 1 and reference therein). In fact, by noting that in general
empirical evidence suggests slope-area relationships of the type:

|Nz̄ | 3 a −m/n, m/n ’ 0.5

in many fluvial regimes of interest but sometimes rather different from such
reference value, it was empirically concluded that the proper landascape
evolution equation should be in the form:

ż=−aam |Nz|n

possibly complemented by a diffusive term portraying hillslope transport.
We see no contradiction with our main tenet, which assumes, in the small
gradient approximation, that when fluxes substitute total contributing
areas, the proper exponents should be m=1, n=2. More generally J 3 am

with m ] 1.0, a well known empirical fact in hydrology. It is also interesting
to note that empirical slope-area relationships significantly different from
the 1/2 slope indicate, within the validity of our scheme, a hydrological
inference which is worth future work.

In spite of its simplicity, this model shows a lot of interesting features.
Note that the stationary solutions of Eq. (4) (i.e., Ż=0) are such that

|NFz| 3 J −1/2. (5)

which implies |NFz| 3 a −1/2 if J 3 a. This is indeed the previously mentioned
slope-discharge relation and is a well known empirical fact. (In ref. 5 a
similar relation |NFz| 3 Jc−1 has been proposed with c ] 1/2).

Numerical simulations of the erosion equation (to be discussed later)
show that the evolution is characterized by two distinct time scales (as was
noted in ref. 5). The soil elevations are lowered in a nonuniform way by
erosion, causing variations in the drainage directions during the evolution.
In a lattice model, at any given time, one may represent the drainage direc-
tions at all sites by means of a two dimensional map. After a first charac-
teristic time, the freezing time, the spanning graph determining the drainage
directions in the basin does no longer changes. Erosion keeps acting on the
landscape and changes the soil height, but preserves the drainage structure.
The second characteristic time, which is much longer, is the relaxation time
at which the profile reaches its stable shape.
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Because many of the measured quantities, such as the distributions of
drained areas and mainstream lengths, depend only on the two dimensional
map, the existence of a freezing time much smaller than the relaxation time
may provide an explanation for the fact that several statistical properties
are found to be almost the same for many rivers, irrespective of their age.

This paper is organized as follows: in the next section we show how
Eq. (4) can be obtained as a low order gradient expansion of an equation
derived by reparametrization invariance arguments. (15, 16) In the third
section we solve the equation exactly in d=1 and show that it is equivalent
to the Burgers’ equation (21) without viscosity. The solution in one dimen-
sion not only yields many of the qualitative features of the two dimensional
case, but can also be interpreted as the evolution along the mainstream in
the physical case (d=2), as long as one properly takes into account the
area collected by each point of this stream. The d=1 case turns out also to
be useful in order to clarify the role of boundary conditions. In Section 4
we briefly review the finite size scaling ansatz proposed in ref. 22 describing
the critical behavior exhibited by river network models, and the scaling
laws relating the critical exponents. (23, 24) The results of numerical studies in
d=2 are reported in Section 5. The simulations have been performed using
a novel algorithm that converges very quickly to stationary solutions and
allows to get very good statistics. The critical behavior of the stationary
solutions is analyzed in detail in the context of the finite size scaling ansatz,
showing perfect consistency with previously proposed scaling relations and
reliable quantitative agreement with observational data. Specifically, we
study the distributions of accumulated areas and upstream lengths, the
profile along the mainstream, and the bifurcation and length ratios.

In Section 6 we briefly review the static model of river networks
known as the Optimal Channel Network (OCN). (25, 26) The OCN model is
based on the ansatz that configurations occurring in nature are those that
minimize a functional describing the dissipated energy and on the deriva-
tion of an explicit form for such a functional. We prove that optimal net-
works are strictly related to the stationary solutions of the model proposed
here. In particular, we prove that to any configuration that minimize the
dissipated energy within the framework of some simple dynamical
rules (25, 26) corresponds, through the slope discharge relation, to an elevation
field that is a stationary solution of Eq. (4). Motivated by this result, we
analyze the temporal behavior of the ‘‘topological energy’’ and show that it
decreases monotonically during the evolution.

The OCN model has been already analyzed by the authors in previous
papers. (23, 24, 27) The scaling behavior of the global minimum has been
worked out analytically and it has been found to yield mean field expo-
nents. Interestingly, local minima also exhibit critical behavior but are

6 Banavar et al.



characterized by different nontrivial exponents. The readily accessible sta-
tionary solutions of our Eq. (4) seem to belong to the same universality
class as the local minima of OCN model. Motivated by these considera-
tions, we performed some simulations of Eq. (4) modified by the presence
of an additive noise term, in order to reach more stable solutions. This has
been achieved by ‘‘heating’’ the system followed by careful annealing with
the additive noise term playing the role of the temperature in the annealing
procedure. Results of this analysis are given in Section 7. We find a distinct
class of stationary solutions whose critical behavior is characterized by a
different set of exponents, corresponding to that of the global minimum of
the dissipated energy and in accordance with a mean field model. (23, 28, 29) In
the same section we analyze the effect of an additive noise term on the
slope-discharge relation (5). In Section 8, we present a novel result in the
form of a theorem on general networks, showing that loopless structures
may arise from the minimization of a cost function. In the context of river
networks, the theorem shows that the fact that their structure is loopless
need not to be taken as an assumption, but follows from the minimization
of the dissipated energy, with the constraint that a continuity equation for
the flow is satisfied. The conclusions and outlook are presented in Section 9.

2. EVOLUTION EQUATION FOR RIVER NETWORKS AND

REPARAMETRIZATION INVARIANCE

The evolution of a surface under the effect of erosion can be described
in general in terms of an equation of the form

“trF(s, t)=n̂(s, t)F[rF(s, t), JF(rF(s, t)), GF] (6)

where rF(s, t) is a three dimensional vector spanning the surface and
s=(s1, s2) varies in parameter space. n̂(s, t) is the unit normal to the
surface at rF(s, t), GF is the gravitational field assumed to be constant on the
surface, JF(rF(s, t)) is the flux in the point rF which is directed along the stee-
pest descent direction of the surface, and F contains a deterministic ero-
sional mechanism. The time derivative of rF must be parallel to the normal
to the surface. Terms parallel to the surface in Eq. (6) would not change
the evolution since by a suitable time dependent change of the parame-
trization they can be readily absorbed.

Based on general considerations, one can guess the form of F. The
first is the reparametrization invariance: (15, 16) irrespective of the details
driving the evolution, the equation must satisfy the requirement of inde-
pendence from the choice of the particular parametrization, s, we are using
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to describe the surface. This means that only quantities that are intrinsic
can enter the equation.

The second consideration is that in the absence of flux, erosion does
not take place, and leads to “trF becoming equal to zero. Indicating with J
the modulus of the flux, the simplest hypothesis is:

F=−JF2+O(J2). (7)

F2 is a scalar and thus it must depend on n̂ and GF only by their scalar
product n̂ ·GF. Moreover, when n̂ || GF, no erosion ought to take place
causing F2 to vanish. This suggests:

F2=G+n̂ ·GF (8)

where G denotes the modulus of GF.
Thus, to first order in J

F=J(G+n̂ ·GF) (9)

Let us now use for rF the Monge parametrization. In this parametrization,
x is a two dimensional vector in the ‘‘substrate’’ plane and z(x) is the
height of the surface in the direction z (|| GF) perpendicular to that plane.
This is not the most general parametrization: the presence of overhangs in
the surface is in fact excluded, otherwise the function z(x) would no more
be single valued. Nevertheless, it is general enough for our purposes. In this
parametrization, the metric tensor has the form gij=dij+“iz “jz with
determinant g=1+|NFz|2. The normal versor is

n̂=g −1/2
“1rF×“2rF=

(−NFz, 1)

`1+|NFz|2
. (10)

In these coordinates, Eq. (6) reads

“trF(x, z(x, t))=n̂(x, z(x, t))F. (11)

Taking on both sides the scalar product with the versor n̂ yields

ż=F`1+|NFz|2, (12)

where ż is the time derivative of z at fixed x. Thus ż/`1+|NFz|2 has the
meaning of velocity in the direction perpendicular to the surface. Replacing
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in Eq. (12) the expression for F given by Eq. (9) and using GF=
G(0, 0, −1), one obtains

ż=−GJ(`1+|NFz|2−1). (13)

To lowest order in a gradient expansion, Eq. (4) is recovered.
Before proceeding, a word of caution is needed here. The above

expansion in small gradient terms implicitly assumes that the surface has a
certain degree of smoothness that, in general, is unlikely to hold at very
small length scales. This problem is rather common in many contexts akin
to the one presented here (roughening, for example, see ref. 17). Our
description ought to hold in a coarse grained picture corresponding to long
length scales, while it may breakdown below a cut-off that we estimate
from the data to be of the order of tens to a few hundred meters at the
most, depending on vegetational, climatic and other environmental factors.
In humid climates, the drainage density, a length scale characteristic of
where channels begin, i.e., the distance one has to walk on average from
any given point before encountering a channel, is of the order of less than
100 meters. It is generally agreed that the channelized portion of the
watershed (that we address) dominates the landscape features at larger
scales. In addition, diffusion-like processes are generally acknowledged to
smoothen the soil height in the overland region outside the channelized
landscape.

3. ANALYTIC SOLUTION IN d=1

Equation (4) in d=1 uniquely determines the evolution of a profile
z(t) once the boundary and initial conditions have been chosen. We will
study the equation on a segment [0, L]. The initial profile z0(x) and the
elevation in L at any time are enough to determine uniquely the solution.
In what follows, in particular, we will consider the case in which the point
at L moves down with constant velocity v. We will show that this equation
has a stationary solution in the sense that, after a certain relaxation time,
the profile moves rigidly with a constant velocity v preserving its shape.
This is exactly the solution we are interested in, since in the real coordina-
tes Z(x, t)=z(x, t)+ct, Z is constant in time if the velocity v is taken to be
equal to the uplift speed c, i.e., v=−c. For smooth profiles without lakes,
J 3 x and then Eq. (4) becomes (after a trivial rescaling of the time in
order to absorb the various constants)

“tz(x, t)=−x[“xz(x, t)]2, x ¥ [0, L] (14)

Scaling, Optimality, and Landscape Evolution 9



with boundary conditions

˛z(x, 0)=z0(x)

“tz(L, t)=−v (v > 0).
(15)

With the change of variable y=`x and taking a derivative on both sides
with respect to x one gets an equation for u(y, t)=“yz(y2, t)=
2`x “xz(x, t) |x=y2 :

“tu(y, t)=− 1
2u(y, t) “yu(y, t) (16)

with boundary conditions

˛u(y, 0)=u0(y)=2y(“xz0(x))|x=y2

u(`L, t)=−2`v.
(17)

Note that the boundary conditions (17) give rise to a continuous solution
only if u0(`L)=−2`v, i.e., if “xz0(x) |L=−`v/`L.

Equation (16) is a special case of a class of differential equations called
conservation laws, and related to the problem of shock waves, that have
been extensively studied both by physicists and mathematicians. Their
solution on (−., +.) is well known. We will show that the problem on
[0, L] defined by Eq. (16) with the boundary conditions (17) is equivalent
to a certain problem on (−., +.) and can thus be solved exactly. The
general solution of Eq. (16) is implicitly given by (see, for example, ref. 30,
Chap. 15)

u(y, t)=û0(y−
1
2 tu(y, t)) (18)

where û0 is a suitable initial condition: û0 cannot in fact be any arbitrary
function in order for the (18) to be invertible. This condition is satisfied for
any û0 as long as “x û0(x) \

û0(x)
x .

The fact that Eq. (18) provides a solution of Eq. (16) can be checked
quite easily by direct substitution. If boundary conditions are postulated in
the form

˛u(y, 0)=u0(y) 0 [ y [ A

u(A, t)=f(t) t \ 0
(19)
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where u0 and f are specific known functions, then

û0(y)=˛u0(y) 0 [ y [ A

f(t(y)) y \ A
(20)

where t(y) solves the equation y=A− 1
2 tf(t). f must be such that Eq. (20)

does not contain any ambiguity in the definition of û0. In the specific case
of Eq. (17) f=const=−2`v, Eq. (20) becomes

û0(y)=˛2y(“xz0(x))|x=y2 y ¥ [0,`L)

−2`v y \ `L
(21)

and thus, through Eq. (18), we have the complete solution for z(x, t),
-t > 0, which, on taking into account Eq. (15), becomes

z(x, t)=− F
L

x

dxŒ

2`xŒ
u(`xŒ, t)−vt. (22)

Such a solution depends on the initial profile z0 only in the transient
regime, while the stationary solution depends only on v and is given by

z(x, t)=2`v(`L−`x)−vt (23)

If, for example, the initial condition is simply a straight line with slope
−m: z(x, 0)=m(L−x), then, from Eqs. (18), (21), and (22) one easily
finds

z(x, t)=˛ −
mx

1−mt
+mL x < x̄(t)

2`v (`L−`x)−vt x \ x̄(t)

(24)

where the function x̄(t) is given by

x̄(t)=L 11−t
`v

`L
2 (25)

In this case, there emerges quite clearly a relaxation time for the evolution
that could be defined as

tR= max
x ¥ [0, L]

t̄(x)=
`L

`v
. (26)

where t=t̄(x) is the inverse function of x=x̄(t).
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In fact, we will show that the discontinuity in u(x, t) does not imply a
discontinuity in z(x, t) if the initial condition z0 is such that “xz0(x)|L [

−`v/`L. In the example of the straight line, (24) is still a solution, and
the function x̄(t) must be determined imposing the continuity of z. Such a
function exists for any m [`v/`L and is given by

x̄(t)=
(1−mt)

m2
1 `v−1 `v−m`L

`1−mt
222 (27)

The relaxation time is tR=2 `L
`v
−mL

v . If m=E`v
L with 0 [ E [ 1 then

tR=`
L
v (2− E) ’`

L
v .

For a generic initial condition tR ’`L, unless v=0. This can also be
easily obtained with the following scaling argument: assuming the scaling
of x, z and t with L:

x ’ L, z ’ La, t ’ Lz, (28)

one gets, from Eqs. (14) and (15) that a−z=2a−1=0 and then

a=z=1/2. (29)

The solution z(x, t, L) assumes the scaling form

z(x, t, L)=`L f 1 x
L
,
t
Lz
2, (30)

where f is a scaling function given by

f(w, k)=− F
1

w

ds

2`s
ū(`s, k)−vk, (31)

where ū(`x/L, t/`L)=u(`x, t; L) and we have used the fact that the
function u(`x, t; L) can be expressed in terms of the dimensionless
variables w=x/L and k=t/`L. This is possible since from Eq. (18)
u ’ L

1
2 −z=L0 (equivalently, from the definition of u, u ’ La−

1
2 ). For t \ tR

the scaling function becomes f(w, k)=2`v (1− `w)−vk. This scaling
argument is also useful to analyze the relevance of a possible diffusive term
“
2
xz in the equation. Such a term should scale as La−2=L −3/2 and turns out

to be irrelevant in the large size limit.
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The case v=0 (zero uplift), should be treated separately. When v=0,
the boundary condition becomes z(L, t)=0, t \ 0. Then Eq. (21) gives
û0(y)=0 for y \ `L. In order for the solution to be well defined, one
requires û0(`L)=0. Now, let us assume that y− 1

2 tu(y, t) (the argument of
û0 in Eq. (18)) can be arbitrarily close to `L, for large enough t. This
assumption will be verified a posteriori. Then, û0 in Eq. (18) can be
expanded around`L. Let us consider the case û −0(`L) ] 0. To first order,

û0(y−
1
2 tu(y, t))=û −0(`L)(y− 1

2 tu(y, t)− `L) (32)

where û −0(`L) \ 0 being û0(y) < 0 for 0 < y <`L. Equation (32) can be
solved for u, yielding

u(y, t)=
2(y− `L)

2û −0(`L) −1+t
. (33)

The hypothesis made above can be easily checked to be true. In terms of z,
Eq. (33) gives

z(x, t)=
(`x−`L)2

2û −0(`L) −1+t
. (34)

for the case v=0 and asymptotic times. This kind of behavior has been
found by Sinclair and Ball (5) on assuming that Eq. (4) could be solved by
the separation of variables. In this case, the landscape assume a ‘‘semi-
stationary’’ shape, in the sense that profiles at different times differ by a
factor t −1.

If we now consider the general case in which û −0(`L) may also be
zero, Eq. (32) must be replaced with

û0 1y−
1
2
tu(y, t)2=ûn

0(`L)

n!
1 y− 1

2
tu(y, t)− `L 2

n

(35)

where ûn
0(`L) is the first nonzero derivative of û0 in `L. Note that

ûn
0(`L) must be negative in order for u(y, t) to be negative which would

correspond to a monotonically decreasing profile z(x, t). This equation
gives a behavior qualitatively similar to that of Eq. (34).

It is interesting to note that the form of the scaling function in the sta-
tionary solution (23) can be obtained from very general considerations and
on the scaling assumption, without referring to a specific evolution equation.
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For a river of size L let z(x, L) be the height at position x. We impose
z(L, L)=0. The height z(x−y, L) with y > 0 can be related to the height
z(x, L) and to the one of a river of length x at position x−y as follows:

z(x−y, L)=z(x, L)+z(x−y, x). (36)

In the limit yQ 0

z(x, L)−yz −1(x, L)=z(x, L)+z(x, x)−yz −1(x, x) (37)

where z −1(x, L)=
“z
“x(x, L). From Eq. (37), given that z(x, x)=0, it follows

that “z
“x(x, L)=z −1(x, x), independent of L. Integrating

“z
“x(x, L) from 0 to L

we have

z(L, L)−z(x, L)=F
L

x

“z
“s

(s, L) ds= F
L

x
z −1(s, s) ds=F(L)−F(x). (38)

where F is a primitive of z −1, i.e.,
“F
“x(x)=z −1(x, x). Because z(L, L)=0, we

have z(x, L)=F(x)−F(L). This is the general expression that a profile
must have (up to this point no assumptions have been made).

If we require scaling:

z(x, L)=Laf 1 x
L
2=F(x)−F(L)=F(L)1 F(x)

F(L)
−12, (39)

then F(x)=−Axa implying

z(x, L)=ALaf 1 x
L
2, (40)

where A=z(0, L) and f(s)=1−sa. This is exactly what we found in d=1
with a=1/2 and what we will find (see Section 6) for the mainstream in
d=2 with the appropriate a.

4. DESCRIPTION OF SCALING LAWS

In order to provide a general setting for further considerations we
review some basic concepts about the finite size scaling approach to the
statistical characterization of river networks. Such networks are known to
exhibit power law behavior typical of fractal structures in the distributions
of some quantities characterizing their morphology. Let us define such dis-
tributions in the simple case of a lattice model which will be used explicitly
in the next sections.
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Fig. 1. Example of drainage network. The outlet is the bottom left corner. In (a) the site i is
upstream with respect to the site j. The upstream length lj of site j is 7 in this case. In (b) the
numbers correspond to the drained areas (assuming a uniform unit precipitation rate) and the
bold line to the mainstream.

A landscape is described by a scalar field of elevation, where drainage
directions are identified by steepest descents, i.e., by the direction of the
largest local decrease of the elevation field. Excluding the presence of lakes,
i.e., assuming that from each point the water does flow to one of the
nearest neighbors, a river network can be represented by an oriented
spanning graph over a two dimensional lattice of arbitrary size and shape,
in which oriented links (one coming out from each site of the lattice) cor-
respond to drainage directions.

To fix the ideas, consider a loopless oriented graph spanning an L×L
square lattice, with outlets on one edge. We will say that a point i is
upstream with respect to a point j if there exists an oriented path joining
the two points from i to j (see Fig. 1). To each site i of the lattice, we asso-
ciate a local injection ri, representing the ‘‘injection (or critical rainfall)
intensity‘‘ in the site i.

The flow Ji, can thus be defined as the sum of the injections over all
the points upstream of site i, site i included. In the case of constant injec-
tion (ri — constant), the flow in a point i results to be proportional to the
area ai drained in that point and we will use these two quantities
interchangeably. In natural basins these drained areas can be investigated
through data obtained from digital elevation maps (DEM’s). (7–9)

By definition, the variables Ji are related by the following set of equa-
tions:

Ji= C
j
wi, jJj+ri , (41)
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where wi, j is 1 if site j is a nearest neighbor upstream with respect to site i
and 0 otherwise.

Another relevant quantity is the so called upstream length relative to a
site, defined operationally as the length of the stream obtained starting
from that site and repeatedly moving along the network in the upstream
direction towards the nearest-neighbor with biggest area (the one leading to
the outlet is excluded, since it is a downstream site), until a source is
reached, i.e., a site with no incoming links. If two or more equal areas are
encountered, one is randomly selected.

For a given graph on a lattice of given linear size L, we will consider
the following two probability distributions originally introduced to describe
river basins and experimentally found to scale as power laws: p(a, L), the
probability density of drained areas a and p(l, L), the probability density
of the upstream lengths l. These represent the fraction of sites draining an
area a or having an upstream length l respectively. We will also consider
the corresponding integrated probability distributions P(a, L), and P(l, L).
For such distributions a finite size scaling ansatz has been formulated (22)

that seems to provide a simple and natural explanation to well known
empirical laws. The finite size scaling ansatz consists in postulating the
following form for the distributions:

p(a, L)=a − yf 1 a
aC
2, (42)

p(l, L)=l −kg 1 l
lC
2, (43)

where f(x) and g(x) are scaling functions accounting for finite size effects
and aC and lC are the characteristic area and length respectively which
depend on L. The functions f(x) and g(x) are assumed to have the follow-
ing properties: when xQ. they go to zero sufficiently fast to ensure nor-
malization; when xQ 0 they tend to a constant, to yield simple power law
behavior of the probability distributions in the large size limit. This also
implies that y and k are bigger than one.

The characteristic area and length are assumed to scale as

aC ’ L1+H, (44)

lC ’ Ldf. (45)

H is known as the Hurst exponent and satisfies 0 [H [ 1. The df expo-
nent, characterizing the typical length, has the meaning of the fractal
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dimension of a stream (each rivulet going from any site to the outlet is
assumed to have the same fractal dimension), and is such that 1 [ df

[ 1+H.
df=1 corresponds to a straight line, whereas df=1+H corresponds

to the situation of virtually one space filling rivulet.
The integrated probability distributions can be written as

P(a, L)=a1− yF 1 a
L1+H
2, (46)

P(l, L)=l1−kG 1 l
Ldf
2, (47)

which follow from (42) and (43) with

F(x)=xy−1 F
+.

x
dy y − yf(y), (48)

G(x)=xk−1 F
+.

x
dy y −kg(y). (49)

The four exponents introduced up to now are not independent. In fact they
have been shown (22–24, 31) to be related by the following scaling laws:

y=2−
df

1+H
, (50)

k=
1+H
df

. (51)

Essentially, the former equation follows from the consideration that the
average over all the sites of the accumulated areas and of the distances
from the outlet are equal; the latter equation from a consistency require-
ment for the conditional probability distribution of upstream lengths l
given an accumulated area a.

The observed values of y and k are in the ranges 1.40–1.46, 1.67–1.85
respectively.
A well known hydrological law, Hack’s law, (11) relates the length of the
longest stream l in the drainage region to the drainage area of the basin a:

l ’ ah. (52)
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The accepted values of h range in the interval h=0.56±0.02. (32–34) Their
definite departure from the Euclidean value 0.5 lead to the first suggestion
of the fractal nature of rivers. (13) From Eqs. (44) and (45) it follows that

h=
df

1+H
. (53)

The scaling relations (50) and (51) can be expressed in a simpler form,
observing that both y and k depend on df and H only in the combination
df/(1+H)=h, where h is the exponent appearing in Hack’s law (52). Thus

y=2−h, (54)

k=
1
h
. (55)

The exponents y and k are thus related by the simple expression:

y=2−
1
k
. (56)

Since 1 [ df [ 1+H and H [ 1 it follows that 1/2 [ h [ 1. This implies
that y [ 3/2. The equality holds only when H=df=1 which corresponds
to the mean field situation. (23, 24, 28, 29)

5. TWO-DIMENSIONAL RIVER NETWORKS

In this section we report our results on the analysis of Eq. (4) in d=2,
corresponding to the physical case. These results come from computer
simulations combined with some analytical arguments.

In Section 5.1 we describe an iterative algorithm for the search of
stationary solutions of Eq. (4). All data regarding the stationary solutions
have been obtained with this method. They are analyzed in detail in Sec-
tions 5.2, 5.3, and 5.4.

All simulations described in this section refer to a square lattice with
periodic boundary conditions in one direction and open boundary condi-
tions in the other one.

5.1. Description of the Iterative Algorithm

Any stationary solution of Eq. (4) must satisfy

aJ |NFz|2=v, (57)
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where v is a constant velocity imposed by the boundary conditions, on the
lower edge. Thus for a stationary solution, the relation

|NFz|== v
a
J −

1
2 (58)

between flux and gradient must hold at any point.
In a discrete version, the landscape is described on specifying a field of

elevation {zi} (a measure of the gradient of z is obtained by the biggest drop
in elevation at site i). We assume, following the observational data, that
there are no lakes or at least that the lakes have been removed by identifying
the flow direction for the water from a lake when it overflows. The drainage
basin can be reconstructed using the rule of steepest descent, i.e., the flux in a
point has the direction of the maximum gradient of the elevation field (the
direction towards the lowest among all its nearest neighbors). One can thus
uniquely associate any landscape (without local height minima correspond-
ing to lakes ) with an oriented spanning graph on the lattice, i.e., an oriented
loopless graph passing through each point. Now, identifying the flux in a
point with the total area drained in that point, one can reconstruct the field
of fluxes {Ji} corresponding to a given oriented spanning graph. The flux in
a site is simply given by the number of sites upstream with respect to that
site in the case of uniform rainfall, and is given by Eq. (41) in the more
general case. From the fluxes, a new field of elevation can be defined using
Eq. (58). The new configuration of the landscape will again not form lakes
because each point has at least one nearest neighbor with a biggest flux,
which includes the one into which it flows, and therefore from (58) it has at
least one nearest neighbor with smaller height.

We can then define a transformation from the set of lake-less configu-
rations on to itself:

{z −i}=T({zi}) (59)

where T consists in the following chain of transformations:

{zi} |||||0steepest descent spanning
graph

||||0drained areas {Ji} ||||0equation (58) {z −i}

Any fixed point of Eq. (59) is a stationary solution of Eq. (4).

5.2. Scaling of Drained Areas and Upstream Lengths

We performed simulations on samples of different sizes starting for
each size with 100 different initial conditions.
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A randomly generated surface is not, in general lake-less. Usually,
initial conditions are constructed giving a random surface and then ‘‘filling
up’’ the lakes. This procedure proves to be very slow. To further speed up
the algorithm, we generated initial conditions from a spanning graph
followed by steps 2 and 3 of the algorithm.

The initial spanning graphs were constructed in the following way: we
choose a site at random as an origin of a random walk that terminated
when it reached a site on the edge containing the outlets. Then another site
is randomly selected among the ones not visited by the previous walks and
a new random walk is generated till it visits one site on the edge containing
the outlets or it intersect the already existent pattern (consisting of the
union of the previous random walk(s) but the present). If, before this
happens the walk intersects itself at some point i, then the older of the two
links emerging from i is deleted in order to eliminate the loop. This proce-
dure is repeated until all sites have been incorporated. The distributions
(46) and (47) of such spanning graphs has been tested in order to check to
which universality class (assumed to be identified by the power laws expo-
nents introduced in Section 4), they belong to. We found y=1.40±0.03
and k=1.67±0.03.

For sizes 32, 64, 128 and 256, starting from configurations generated
in this way and iterating the algorithm described in Section 5.1 we got sta-
tionary solutions of Eq. (4). The distributions of the resulting drained areas
and upstream lengths show power law behavior. The exponents are nearly
the same for each configuration and are different from the ones we started
from. Averages over the 100 stationary conditions give for the exponents

Fig. 2. Integrated probability distribution of accumulated areas averaged over 100 samples
on 32×32, 64×64, 128×128 and, 256×256 square lattices. The slope of the dashed line is
y−1=0.45.
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Fig. 3. Integrated probability distribution of mainstream lengths averaged over 100 samples
on 32×32, 64×64, 128×128, and 256×256 square lattices. The slope of the dashed line is
k−1=0.82.

y=1.45±0.02 and k=1.82±0.02. Log–log plots of these integrated
probability distributions of accumulated areas and upstream lengths are
shown in Figs. 2 and 3. Collapse tests have been carried out in order to
evaluate the exponents defining the characteristic area and length that
yield: 1+H=1.98±0.04 and df=1.10±0.04. The collapse plots are
shown in Figs. 4 and 5. These numerical values are in perfect agreement
with the scaling relations in Section 4.

To have a direct measure of the exponent h appearing in Hack’s law,
we plotted the drained areas along the mainstream with respect to the

Fig. 4. Collapse plot for the distributions of Fig. 2 obtained with y=1.45 and 1+H=1.98.
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Fig. 5. Collapse plot for the distributions of Fig. 3 obtained with k=1.82 and df=1.1.

corresponding upstream length (inset in Fig. 7). We found a good power
law with an exponent h=0.55±0.02 in good agreement both with the
values of H and df and with the value observed in natural basins.

We note that the values of the exponents we found are quite close to
‘‘trivial’’ ones (df=1, y=3/2, for example) , so that one might wonder if
what we are really seeing are corrections to scaling rather than a genuine
non-trivial universality class. To test such an eventuality we tried more
complicated fits, but this involved the introduction of additional param-
eters (in the form of coefficents and exponents). It becomes hard to judge
whether such fits are warrented from the data on hand. Our view has been
that the most important corrections are due to the finite size of the basin
and that is what we carefully considered. Our analysis yields satisfactory
collapse plots. Strikingly, we get consistent exponents for the observational
data in our theoretical analysis and more important, these effective expo-
nents obey the theoretically derived scaling relationships. Our results are
clearly consistent with a non-trivial universality class. Of course, one
cannot rule out the possibility that the exponents may become trivial when
the basin size becomes asymptotically large.

5.3. Scaling of Profiles and Profile Along the Mainstream

Let x be the direction parallel to the edge containing the outlets in the
‘‘substrate’’ plane, and y the perpendicular direction with y=0 corre-
sponding to the outlets’ edge. For each sample we considered the one
dimensional profiles obtained taking slices in the direction y at constant x
and the corresponding roughness. The profiles and roughness averaged
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over all x again show scaling properties. The height of the profile
(z(y)=1

L ;x z(x, y)) is found to have the form:

z(y)=Lafz
1 y
L
2 (60)

with a numerical value for the exponent of a=0.33± .05 (see Fig. 6).
Likewise for the roughness w(y)=[L −1 ;x(z(x, y)−z(y))2]1/2 in the y=
const. plane

w(y)=LaŒfw
1 y
L
2 (61)

with aŒ=0.25±0.05 (see Fig. 6).
In addition, we reconstructed the profile along the mainstream. This

again exhibits scaling properties with a law analogous to (60) where L is
replaced with the length L of the mainstream and with a different value of
the a exponent:

z(l)=La2f2z 1
l
L
2. (62)

In (62) l refers to the length measured along the stream. The value of a2 is
a2=0.09±0.01 definitely smaller than the value of a in (60). This is not
surprising since by definition, going back up along the main stream, at each
step one chooses the direction of the site with biggest area, i.e., for

Fig. 6. Attempts to collapse the average profiles and roughness with a=0.33 and aŒ=0.25.
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the relation (58), the direction of the smallest gradient. The resulting path is
then systematically lower than a generic one.

It is very interesting to note that Eq. (62) can be recovered analytically
with the correct exponent and with the explicit form of the scaling function
with the following argument: the evolution along the mainstream can be
regarded as an effective one dimensional problem if one takes properly into
account the fluxes along the stream. Thus we argue that the behavior of
z(l, t) is well described by Eq. (14) replacing x on the right hand side
with ln. The value of n is expected to be given by the exponent h −1=1+H

df
relating the area drained in a point with the upstream length relative to
that point (see Eq. (52)).

Thus we are led to the following equation for the main stream evolu-
tion (after the imprinting of the drainage directions has occurred)

zt(l, t)=−klnz2l(l, t) (63)

with initial conditions

˛z(l, 0)=z0(l)

“tz(L, t)=−v.
(64)

This can be solved following the method described in Section 3 with the
substitution y=l1−

n
2 unless n=2. The solution is given by

z(l, t)=
1
m
= v

k
(Lm−lm)−vt (65)

where m=1− n2 .
Using n=h −1=1+H

df
we get m=1− n2=1− 1+H

2df
=0.09±0.03, in agree-

ment with d̃. The value of k % 0.51 has been extrapolated from the log–log
plot of Fig. 7 (inset) where the accumulated areas along the mainstream are
plotted against the upstream length. This analytical expression for z fits
surprisingly well with the profiles obtained in the simulations, as is shown
in Fig. 7 for the samples of size 128. Figure 8 shows the collapse of the
profiles of sizes 32, 64, 128 and 256.

5.4. Bifurcation Ratios and Length Ratios

Other quantities that are used to describe the morphology of river
networks are the bifurcation ratio RB and the length ratio RL, which can be
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Fig. 7. Profiles along the mainstream obtained in two dimensional simulations on a
128×128 square lattice and averaged over 100 samples starting from different randomly
chosen initial conditions. The solid line is the analytical result for z+vt of Eq. (65) with an
exponent h=0.55. The value of h has been obtained from the log–log plot of the upstream
lengths along the mainstream versus the corresponding areas shown in the inset. Numerical
values and theoretical prediction are practically indistinguishable.

defined in the context of the Strahler’s ordering scheme. (35) In the Strahler’s
ordering scheme, to each channel in a given network, one associates an
order w. An order 1 is assigned to streams starting in a source. Any stream
emerging from an aggregation point, has the order of the biggest of the
incoming streams, if they have different orders, and w+1 if there are two
(or more) incoming channels of order w. Let Nw and Lw respectively denote

Fig. 8. Collapse of profiles along the mainstream corresponding to 32×32, 64×64,
128×128, and 256×256 square lattices obtained with a2=0.09 and L % Ldf with df=1.1.
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Fig. 9. Plot of logN(w) and log L(w) versus w, averaged over 100 samples of size 128×128.
The slopes are − log RB and log RL respectively with RB=4.3±0.3 and RL=2.2±0.2.

the number of streams of order w and their average length. Experimentally
Horton (36) found that the branching and length ratios, defined as RB=

Nw
Nw+1

and RL=
Lw+1
Lw

are essentially independent of w in natural basins, and their
value are RB 4 4 and RL 4 2. We tested these quantities on the networks
corresponding to the stationary solutions of Eq. (4). We found that the
ratios are indeed approximately independent of w and are RB=4.3±0.3
and RL=2.2±0.2, in quite good agreement with the experimental data
(Fig. 9). The fractal dimension of the network, Df, can be readly deduced
in terms of RB, RL and df. Indeed the maximum Strahler index, wmax, is such
that Rwmax

L 4 Ldf, corresponding to the main stream. Thus Nw 4 Rwmax−w
B and

the total length of the network is LDf —;w NwLw 4 Rwmax
B , from which one

obtains Df=dfln RB/ln RL=2.0±0.2 in accordance with expectation for a
space filling structure.

6. RELATION BETWEEN THE MODEL OF LANDSCAPE EVOLUTION

AND THE OPTIMAL CHANNELS NETWORK MODEL

The Optimal Channel Network (OCN) model has been recently
proposed by Rodriguez-Iturbe et al., (25, 26) and is based on a principle of
minimum energy dissipation. It postulates that drainage basins, subject to
energy input from precipitation, form, in their stationary state, a structure
that minimizes the rate of energy dissipation.
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An interesting question is whether networks resulting from the ero-
sional dynamics are related to the optimal networks arising from the
minimization of the dissipated energy. In this section we address this ques-
tion, and we show that the erosion model presented in this paper, although
derived in a completely independent way, is strictly related to the Optimal
Channel Network model; namely, we prove that any landscape recon-
structed from an optimal configuration using the slope-discharge relation is
a stationary solution of the evolution equation. Superficially, this may seem
to be a trivial fact because the relation between gradients and flows is
verified by construction, but one should notice that the slope discharge
relation alone does not implies stationarity, because the flow may not be
(and in general is not) in the direction of the steepest descent in the recon-
structed landscape. It is indeed a remarkable point that the minimization of
the dissipated energy performs the nontrivial task of selecting networks
that ‘‘come’’ from a consistent elevation field.

6.1. Optimal Channels Network Model

Let us briefly review the OCN model. To each landscape {zi} defined
on a lattice as in Section 2 we associate a dissipated energy as

E=C
i
kiJiDz(i) (66)

where Dz(i) is the height drop along the drainage direction, Ji is the flow
through the site i, and ki is a quantity related to the soil properties such as
erodability, vegetation, lithology etc. For homogeneous basins ki=1
without loss of generality.

Field investigations (37–39) show that the velocity of the flow tends to be
constant throughout the network. Thus the energy dissipated to maintain
the water flow, equals the potential energy associated with precipita-
tion. (37–40) The power dissipation in a link is JiDzi and (66) represents the
power expenditure in the whole system.

Using the empirical law Dz(i) ’ Jc−1
i , with c 4 0.5, (37, 40, 41) Eq. (66) can

be rewritten as

E(T)=C
i
Ji(T)c. (67)

where c 4 0.5 and T represents the oriented spanning graph associated with
the landscape. The optimal channel networks consist of the configurations
T which are local minima of the dissipated energy (67) in the sense specified
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Fig. 10. Example of two close configurations.

below: we will say that two configurations T and TŒ are close if one can go
from one to the other on just changing the direction of one link (the set of
links T 2 TŒ represent a graph with a single loop (see Fig. 10)). A configu-
ration T is said a local minimum of the functional (67) if to each of the
close configurations TŒ corresponds to a bigger energy. Note that not all
changes are allowed in the sense that the new graph again needs to be
loopless. Thus a local minimum is a stable configuration under a ‘‘single
link flip dynamics,’’ i.e., a dynamics in which only one link can be flipped
at a given time, and is flipped only when the move does not creates loops
and decreases the functional (67).

6.2. Connection with the Landscape Evolution Model

We will prove that any elevation field corresponding through the rela-
tion (58) to a configuration minimizing at least locally the functional (67) is
a stationary solution of Eq. (4), in the sense that the landscape recon-
structed from an optimal drainage network with the slope-discharge rule is
consistent with the fact that the flow follows the steepest descent.

The proof is as follows: consider a configuration realizing a local
minimum of the dissipated energy, and a site i. The link emerging from i
will go into one of the nearest neighbors of i, let us say k. Let j be one of
the other nearest neighbor such that changing the link from iQ k to iQ j
one still gets an allowed configuration. Paths emerging from k and j will
intersect downstream in a given point w (case (a)) or will never intersect
until they reach their outlets (case (b)). Let Skj denote the set of all points in
the path from k to w in the first case and from k to its outlet in the second
(see Fig. 11). Likewise for j. Changing the link from iQ k to iQ j will
cause only the areas of sites belonging to the sets Skj and Sjk to change. In
particular all areas in the set Sjk will be increased by an amount equal to
the area a(i) contributing to the flow through i (see Eq. (41)), and all areas
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Fig. 11. Example of the two cases (a) and (b). Sites belonging to Skj are denoted with
crosses, sites belonging to Sjk are denoted with circles.

in the set Skj will be decreased by the same amount. Such a change will
cause a change (DE)kQ j in the dissipated energy equal to

(DE)kQ j= C
x ¥ Sjk

[(a(x)+a(i))c−a(x)c]+ C
x ¥ Skj

[(a(x)−a(i))c−a(x)c]. (68)

where c=1/2 and a(x) are the flows before the flip.
The condition for a configuration to be a local minimum of E translates

into the set of conditions

(DE)kQ j > 0 (69)

for each i and j such that j is a nearest neighbor of i and gives rise to a
loopless configuration.

Our aim is to show that conditions (69) imply that the elevation field
determined by the local minimum configuration using (58) represent a
stationary solution of equation (4). To that purpose, it will be useful to
express the condition of stationarity in a more explicit form. In order to be
a stationary solution of Eq. (4) the elevation field determined by a graph
using (58) must be such that the drainage directions derived with the
steepest descent rule yields again the graph from which the elevation field
originated. This would imply that if iQ k is the drainage direction in the
point i, the biggest drop in elevation from i to its nearest neighbors is in the
direction of k. This condition reads:

z( j) > z(k) (70)
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for any j that is a nearest neighbor of i and different from k. In the same
notation of Eqs. (68) and (69), the height at these two points can be written
as:

z( j)=z(w)+c C
x ¥ Sjk

a(x) −
1
2

z(k)=z(w)+c C
x ¥ Skj

a(x) −
1
2

(71)

in the case (a) and

z( j)=c C
x ¥ Sjk

a(x) −
1
2

z(k)=c C
x ¥ Skj

a(x) −
1
2

(72)

in the case (b) (the outlets are assumed to be at zero height given that the
constant drift has been subtracted). c in Eqs. (71) and (72) is a constant
coming from a suitable discretization of Eq. (58). In both cases

z( j)−z(k)=c 5 C
x ¥ Sjk

a(x) −
1
2 − C

x ¥ Skj

a(x) −
1
2 6. (73)

In order to prove that Eq. (69) implies Eq. (70), let us observe that Eq. (68)
can be rewritten as:

(DE)kQ j= C
x ¥ Sjk

c F
a(x)+a(i)

a(x)
yc−1dy− C

x ¥ Skj

c F
a(x)

a(x)−a(i)
yc−1dy. (74)

Because c < 1, the first integral of Eq. (74) is smaller than a(x)c−1 a(i) and
the second one is bigger than a(x)c−1 a(i). Thus Eqs. (73) and (74) imply

(DE)kQ j <
c

c
a(i)(z( j)−z(k)) (75)

where the hight z( j) and z(k) are evaluated before the link-flip is done.
Equation (70) follows from Eqs. (69) and (75).

The proof holds in the more general case of 0 < c < 1 and Eq. (58) is
substituted with |NFz| 3 Jc−1. The converse is not true, i.e., a stationary
solution of Eq. (4) is not necessarily a local minimum of the dissipated
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Fig. 12. One possible counterexample. A stationary solution of Eq. (4) not necessarily
realizes a minimum of (67). a1, a2, and q represent the drained areas of the corresponding sites
each independently of the others. Indeed, in the case in the figure stationary solution
S Dz2 [ Dz1 S (a2+q) −1/2 [ a −1/2

1 Z a1 [ a2+q;nota localminimumoftheenergyR (a2+q)1/2

+a1/2
1 > a1/2

2 +(a1+q)1/2 Z (a1+q)1/2−a1/2
1 < (a2+q)1/2−a1/2

2 Z a2 < a1.

energy (under the single link flip dynamics). Counterexamples can be easily
constructed.

For example, configurations corresponding to the situation shown in
Fig. 12 are stationary solutions of Eq. (4) for any a1 [ a2+q while they are
not local minima of (67) when a2 < a1. Thus, any choice of a1, a2 and q
such that a2 < a1 [ a2+q provides a counterexample.

6.3. Time Behavior of the Topological Energy

We analyzed the behavior of the ‘‘topological’’ energy E=;i a(i)1/2

during the evolution of the system, performed with the algorithm described
in Section 5.1. We performed several simulations starting from randomly
chosen initial networks. E was always found to decrease monotonically
during the dynamics. A typical behavior of the energy as a function of
time, for a system of size 128×128 is shown in Fig. 13. The horizontal line
represent the energy of the optimal channel network obtained using the
stationary network as initial condition.

A proof of the fact that the topological energy is a decreasing function
during the evolution can be given in the simple case in which the system
evolves with the algorithm described in Section 5.1, where a single link is
considered at each time step. In this case, the energy decreases at each step.
Consider a generic network configuration and a site i, where the link
emerging from i goes into the nearest neighbor k. If the elevation in
another nearest neighbor, j, evaluated with the slope-area relation (58), is
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Fig. 13. Topological energy E=;i a(i)1/2 as a function of time for a 128×128 sample. The
solid line below the curve is the energy of the local optimal network obtained starting with the
stationary state as initial condition and using a link flip dynamic where a move is accepted
only if E decreases.

smaller than the elevation in k, the link is updated: from iQ k to iQ j.
This condition corresponds to

z(k)−z( j)=c 5 C
x ¥ Skj

a(x) −
1
2 − C

x ¥ Sjk

a(x) −
1
2 6 > 0, (76)

in the same notation of the preceding section. Thus, due to Eqs. (76) and
(75), it follows that the spin-flip move iQ k to iQ j decreases the topolog-
ical energy (67).

7. RESULTS IN d=2 WITH ADDITIVE NOISE

7.1. Simulated Annealing

Heating the system with an additive noise term in Eq. (4), and care-
fully annealing, enables one to reach more stable solutions, with different
statistics. Because optimal channel networks have been proved to be sta-
tionary solution of Eq. (4), and the global minimum of the dissipated energy
(Eq. (67)) has been found to be characterized by mean field exponents, one
might expect to approach this mean field behavior on trying to reach stable
local minima on annealing of the system. This is in fact the case.
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Simulations described in Section 3.2 have been repeated starting from
10 initial conditions chosen as in Section 3.2 for the equation

ż(t, x)=−aJ(t, x) |NFz(t, x)|2+g(t, x). (77)

where g(t, x) are independent random variables identically distributed
with uniform distribution, zero mean and variance Og(t1, x1) g(t2, x2)P=
Ddt1, t2dx1, x2.

A brief sketch of the algorithm is as follows:

(i) Generation of a random initial configuration. We generate
randomly an initial configuration as described in Section 5.2.

(ii) Evolution of the configuration. The system is evolved with the
algorithm described in Section 5.1 with the modification that v in Eq. (58)
is replaced by v−g(t, x), for 4×L×L iterations (c=−v in Eq. (1)).

(iii) Lowering of the variance D. In each cycle the variance D of the
noise distribution is lowered by a factor sŒ 4 0.966 by decreasing the inter-
val of definition of g of a factor s=0.983. At the first cycle g ¥ [−vs, vs],
at the nth cycle g ¥ [−vsn, vsn].

Steps (ii) and (iii) are repeated many times, until D reaches very low values
( % 10 −4). The entire algorithm is repeated from step (i) with a new initial
condition.

The distributions of drained areas and mainstream lengths show
power law behavior with exponents y=1.50±0.03 and k=1.98±0.03, as
shown in Figs. 14 and 15. The exponents for the characteristic area and
length are found to be 1+H=1.98±0.05 and df=1.00±0.05 from the
collapses. The exponent h has been obtained from the log–log plot of
drained areas along the mainstream with respect to the corresponding
upstream lengths yielding h −1=2.00±0.05.

The scaling of the profiles along the mainstream has also been tested.
We found a logarithmic behavior of z with L. This is in perfect agreement
with the analytic argument in d=1: Eq. (63) with n=2− e can be solved
with the substitution y=l1−

n
2 . Taking the limit eQ 0 in the solution one

gets

z(l, t)=−= v
k

log (L/l)−vt (78)

which is the solution of Eq. (63) with n=2. The comparison between the
profiles obtained by simulations for a size 128 and this analytical prediction
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Fig. 14. Averaged distributions of drained areas for sizes 32, 64, 128. The dashed line
corresponds to slope −0.5.

is shown in Fig. 16. The value of k, as in Section 5.3, has been extrapolated
from the log–log plot of the areas along the mainstream versus the cor-
responding upstream length. Note that a naive scaling argument as in
Section 3 again gives the correct result. Assuming the scaling of x, z and t
with L to be

x ’ l ’ L, z ’ La, t ’ Lz, (79)

Fig. 15. Averaged distributions of upstream lengths for sizes 32, 64, 128. The dashed line
corresponds to slope −1.
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Fig. 16. Profile along the mainstream for a size 128. The solid line corresponds to the
theoretical prediction.

and observing that the noise term scales as (x −1t −1)1/2 ’ L −
1+z
2 , one gets

˛a− z=2a−1

a− z=−
1+z
2

.
(80)

This gives z=1 and a=0, in accordance with the logarithmic behavior
found in (78). Also in this case, the diffusive term seems irrelevant since it
should scale as La−2.

8. MINIMUM ENERGY AND LOOPLESS STRUCTURES

8.1. Equations for the Currents

Consider a square lattice. Fix an orientation for all lattice bonds (e.g.,
the ones of the positive axis as in Fig. 17). On each bond b a current ib is
defined. ib > 0 if it is flowing in the assigned direction, ib < 0 otherwise.
Uniform (unit) injection (rainfall in the case of river networks) is equivalent
to the set of constraints

(“i)x=1 (81)

where “ is a discrete version of the divergence and is a measure of the net
outflow from a site (see Fig. 18):

(“i)x=−i1−i2+i3+i4 (82)
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Fig. 17. Portion of a lattice showing the orientation of bonds.

We want to show that any local minimum of the cost function

E=C
b
|ib |c (83)

when 0 < c < 1, corresponds to ib ] 0 only on the bonds of a spanning tree.
In other words, we would like to prove that the networks that corre-
spond to local minima of the dissipated energy are loopless and tree-like.
The tree must be spanning due to the constraints (81): one cannot have
ib=0 for all b’s connected to a site so that there must be at least one outlet
from each site x. Some site (or sites) must also be declared to be the global
outlet. Thus loopless structures emerge as optimal solutions of Eq. (83)
with the constraint (81).

Let us start with an extremely simple example: 4 sites. After imple-
mentation of (81), in the notation of Fig. 19, Eq. (83) becomes

E=|a|c+|a+1|c+|1−a|c+|2−a|c. (84)

Fig. 18. Orientation of currents into and leaving a site.
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Fig. 19. Example: graph with 4 bonds. The black dot is the outlet.

In Fig. 20 one immediately sees that there are local minima in correspon-
dence with one of the four currents being zero (a=2, 1, 0, −1), corre-
sponding to the four trees shown in Fig. 21. The explanation is simple.
Suppose that a ’ 0 (the other cases are equivalents). Then all the terms in
(84) but |a|c can be expanded in Taylor series around a=0. Thus, locally

E=2+2c+|a|c+O(a) (85)

which has a cusp-like appearance because 0 < c < 1; if c < 0 there would be
a divergence instead of the cusp. Notice that “E

“a |a=0±=±. and thus one
cannot find the minima simply by imposing the condition “E

“a=0. If
a ] 0, ±1, 2, “2E/“a2 < 0 and there are no other minima of E (only
maxima).

In Fig. 22, the function E versus a is plotted for various values of c.
Note that for c=1 all directed (with the currents going in the positive
directions) configurations, loopless or not, have the same energy. The case
c=2 corresponds to the resistor network case for which there is just one
minimum at a=1/2.

Fig. 20. Plot of the function E versus a for c=0.5.
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Fig. 21. Loopless configurations for the graph of Fig. 19.

Fig. 22. Plot of the function E versus a for c=0.25, 0.5, 0.75, 1, 2. The lowest curve is for
the smallest value of c and the location of the curve moves up as c increases.

Fig. 23. Example: graph with 7 bonds. The black dot is the outlet.
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Another example is that of the graph shown in Fig. 23. The energy
surface is shown in Fig. 24 (to make the cusps stand out better, −E has
been plotted instead of E). The 15 cusps correspond to the 15 loopless
configuration of this graph (see Fig. 25). Note that since there is one
unknown current for each bond and one continuity equation for each site
the number of independent variables is given by the number of bonds
minus number of sites (excluding the outlet), which for the simple
topologies we have considered is equal to the number of elementary
plaquettes (this is a particular case of Euler theorem).

8.2. Lagrange Multipliers

Since we have seen that local minima occur in singular configurations,
where some currents are zero, we cannot introduce the standard technique
of Lagrange multipliers to find the minima of E with the constraint (81). In
order to be able to do that we must regularize E as follows

E=C
b
(i2b+e

2)c/2 (86)

Fig. 24. Plot of the function −E versus (a, b) for c=0.5.
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Fig. 25. The 15 loopless configurations for the graph of Fig. 23. The spanning trees with the
same energy are on the same line and the lines are in the order of increasing energy. The
arrows are drawn following the orientation fixed in Fig. 23.

The previous definition is recovered in the limit eQ 0. If we consider again
the simplest case of the 4 bonds graph, we should solve the following
equations (with i1, i2, i3 and i4 as in Fig. 26).

0=
“

“ib
(E+lA(i1+i2−1)+lB(i3−i2−1)+lC(i4−i3−1)), b=1, 2, 3, 4

(87)

Fig. 26. Signs of the current for the example with Lagrange multipliers.
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These imply (defining l0=0)

(a) l0−lA=
i1

(i21+e
2)1− c/2

c,

(b) lB−lA=
i2

(i22+e
2)1− c/2

c,

(c) lC−lB=
i3

(i23+e
2)1− c/2

c,

(d) l0−lC=
i4

(i24+e
2)1− c/2

c.

(88)

If we define the r.h.s. of Eqs. (88a)–(d) as Jb with b=1,..., 4 respectively,
then from Eq. (88) we have

−J1+J2+J3+J4=0 (89)

meaning that the current Jb is irrotational (i.e., NF ×JF=0 or equivalently
? dlF· JF=0 around any loop). This, of course, has been allowed by the reg-
ularization that ensures that none of the Jb Q., corresponding to some
ib Q 0. If |i2 |° e, Eqs. (88a)–(d) have a solution

i1=1+O(e2− c)

i2=−
e2− c

21− c

i3=1+O(e2− c)

i4=2+O(e2− c),

(90)

and

−lA=c, −lB=c(1+2c−1), −lC=c2c−1, (91)

and thus no divergence occurs on the r.h.s. of (88b). −l may then be iden-
tified as the elevation field. However the current directions do not corre-
spond to the steepest descent.
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8.3. General Proof

Given an arbitrary graph, the number l of independent loops is given
by

#(loops)=#(bonds)−#(sites)+#(connected components) (92)

As was observed previously, our graphs must be spanning structures, thus
#(connected components)=1. For example, in the case of an n×m rec-
tangular lattice, l=nm−n−m+1.

We want to show that any spanning tree is a local minimum of (83)
and that there are no other minima.

The proof is easy if one fixes a spanning tree and properly chooses the
independent variables to be the currents flowing in the bonds absent in that
tree. It is immediate to see that the number of bonds absent in a tree
spanning a graph is equal to the number of loops in that graph and given
by Eq. (92). Consider a general structure with l independent loops. The
energy

E=C
b
(i2b+e

2)c/2 (93)

has a local minimum in all the configurations T corresponding to currents
ib ’ e2− c in all b ¨ T. If we overlap T to that structure, we can assign loop
currents x1, x2,..., xl to the bonds b ¨ T. All the others currents are
determined by the constraints (81) in terms of xF. Thus E=E(xF). We will
prove that “E/“xi=0 at xi ’ e2− c and that the Hessian is positive definite.
Indeed

“E
“xi

=c C
b

ib
(i2b+e

2)1− c/2
“ib
“xi

, (94)

where ib is linear in xi and
“ib
“xi
=±1. Notice that in the sum (94) not all the

bonds b are necessarily present. For example, in the case shown in Fig. 26
in “E/“x1 at least the contributions from the bonds x2, x3 and x4 are
absent. This implies that only in one term of (94) ib ’ 0 and it corresponds
to ib=xi. All the others are finite when xF Q 0. Then, “E

“xi
=0 implies

xi=− e2− c C
b
Œ |ib |c−1 sgn(ib)

“ib
“xi

4 e2− c, e ’ 0 (95)
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and the sum ;Œ is over all the terms present in (94) but b: ib=xi.

Hij=
“
2E

“xi “xj
=c C

b
œ
(c−1) i2b+e

2

(i2b+e
2)2− c/2

“ib
“xi

“ib
“xj

i ] j, (96)

where in the ;œ the contributions from b with ib=xk are absent. Thus,
each of the “

2E

“xi “xj
is finite in the eQ 0 limit. When i=j

Hij=
“
2E

“xi “xj
=cec−2+O(e − c), (97)

and thus H has the form

H=cec−2(I+e2− cT), (98)

where Tii=0, and Tij=
1
cHij , i ] j. This implies that the eigenvalues of H,

for sufficiently low e are all positive, confirming that (95) is indeed a
minimum.

Furthermore, one can see that closing one or more loops with finite
(O(e0)) currents (taking one or more xi finite) causes the appearance of one
negative eigenvalue in the Hessian matrix for each added bond. If xi is the
current in this added bond, then the first derivative is “E

“xi
=c |xi |c−1 sgn(xb)

+c; −

b |ib |
c−1 “ib

“xi
sgn(xb), and the second derivative is “

2E

“x2i
=c(c−1) |xi |c−2+

; −

b c(c−1) |ib |c−2 < 0. Hii < 0 implies that ;kj Hkjzkzj < 0 if zi ] 0 and
zk=0, k ] i. This shows that in this case the quadratic form Hij is not
positive definite and no local minima can be found when there are loops
with non-zero currents in the eQ 0 limit. This completes the proof.

When Lagrange multipliers are introduced

0=
“

“ib
5E+C

x
[(“i)x−1] lxc6=c 5

ib
(i2b+e

2)1− c/2
−(dl)b 6 , (99)

where (dl)b=lx−ly if b links x and y and is oriented from x to y. From
Eq. (99)

(dl)b=
ib

(i2b+e
2)1− c/2

. (100)

Corresponding to a given tree T for the ib with b ¥ T, and because ib ] 0,
we have

(dl)b=|ib |c−1 sgn(ib)+O(e2− c), (101)
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whereas, for b ¨ T, Eq. (95) gives:

(dl)b=
ib

(i2b+e
2)1− c/2

=− C
b
Œ sgn(ib)

“ib
“xi

|ib |c−1, (102)

where the sum has the same meaning as in (95). Notice that the neglected
terms in (101) come from the xi dependence of ib.

Let us verify that (101) and (102) are consistent. With reference to
Fig. 27, all bonds on the side (1) have a current ib Q ib+x when x=0Q
x ] 0, whereas on the side (2) ib Q ib−x. On the side (3) the currents do
not depend on x. Thus from Eq. (102) one gets

(dl)b*=− C
b ¥ side 1

|ib |c−1 sgn(ib)+ C
b ¥ side 2

|ib |c−1 sgn(ib). (103)

Let us verify that along the closed circuit in Fig. 27 one has

Dl — C
b ¥ side 1 2 (− side 2) 2 b*

(dl)b=0. (104)

Due to Eq. (101):

Dl — C
b ¥ side 1

|ib |c−1 sgn(ib)− C
b ¥ side 2

|ib |c−1 sgn(ib)+(dl)b* (105)

that is indeed zero due to Eq. (103).
This also shows that the terms contributing to Eq. (102) are the ones

along the unique path of T joining the extremities of the bond creating the
loop.

Fig. 27. Notations for the last part of the proof.

44 Banavar et al.



From the minimization of Eq. (83) spanning trees emerges and in cor-
respondence of any local minima it is possible to define a scalar field lx
satisfying Eq. (101) (proportional to the Lagrange multipliers in Eq. (99)).
Eq. (101) is reminescent of the slope-discharge relation discussed in the
introduction (see discussion about Eq. (5)). Thus is tempting to identify lx
as the field of elevation. (42) However, in general, the currents defining lx
through Eq. (101) do not follow the steepest descent route. It is the further
minimization of Eq. (83) in the space of the configurations with the con-
straint (81) that leads to lx identifiable as the height field, i.e., currents
consistent with steepest descent route. This follows from the theorem
proved in Section 6.2.

8.4. Case c=1

In the case c=1 the previous proof does not hold. However one can
prove that, all directed configurations, i.e., ones in which the currents flow
in the positive directions correspond to the same energy, and that any other
configuration has a bigger energy. One can see that in the simple example
of one loop in Fig. 19.

The proof goes as follows: Let us call V(x) the distance of site x from
the outlet. Any site y which is a nearest neighbor of x and flowing into x
has a distance V(y)=V(x)+1 from the outlet. Then, since (dV)b=−1,

C
x
V(x)=C

x
V(x)(“i)x=− C

b
ib(dV)b=C

b
ib , (106)

where the ;x is a sum over the sites and ;b is a sum over the bonds. Note
that ;x Vx depends only on the graph topology and is independent of the
current configuration.

If the configuration is directed, then ;b ib=;b |ib | q Ed, because all
currents are positive.

In any other current configuration

E=C
b
|ib | \ :C

b
ib := C

x
Vx , (107)

and then E \ Ed. This completes the proof.

9. CONCLUSIONS AND OUTLOOK

The model proposed and analyzed in this paper, inspite of its simplicity,
captures a lot of features of landscape evolution. The evolution equation

Scaling, Optimality, and Landscape Evolution 45



is derived from very general considerations and provide a good qualitative
and quantitative explanation for many observed facts: Hack’s law, the
slope-discharge relation, the power law distributions of drained areas and
upstream lengths, and the bifurcation and length ratios. It also predicts the
exact scaling of the average profile and the profile along the mainstream
that may be deduced from observational data and would provide a good
test of our theory.

A point that is still unclear is the fact that as a consequence of short
freezing times corresponding to a very rapid imprinting of the landscape,
the final drainage configuration of the network has a strong dependence on
the initial condition. This can account for the range of values observed for
y and k but opens the question of what is a good physical choice for the
initial configuration. Note however that this problem does not affect any of
the results on the evolution of the profile and the relative scalings.

Another interesting result is that networks resulting from this erosio-
nal dynamics are related to the configurations (Optimal Channel Networks
(OCN) (25,26)) arising from the minimization of the total dissipated energy.
This also reveals a remarkable feature of optimal networks, in the sense
that it proves that these networks originate from an elevation field–––the
landscapes are such that the slope-discharge relation holds at any point,
and the set of drainage directions corresponds to the given network. The
theorem on the occurrence of spanning networks as a consequence of the
minimization of the dissipated energy justifies the conventional assumption
of assigning a well defined direction for the flow. In fact, it states that in a
‘‘semicontinuum’’ formulation, in which the flow can split in more direc-
tions, each loopless spanning tree is a local minimum of the dissipated
energy, and no other minima exist. Another interesting point is that the
dissipated energy has been found indeed to monotonically decrease during
the evolution.

Lastly, we believe that our results on optimal transportation networks
could possibly be of interest in other problems where branched structure
naturally arise from an optimization principle, for example, see refs. 43–45.
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